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Abstract-A unified method is presented that leads to the new functionals of classical type for which 
the necessary stationarity conditions are linear hyperbolic differential equations of change describing 
uncoupled heat, mass and momentum transport in incompressible media. Attention is directed toward 
the significance of functionals found for a variational description of irreversible transport processes, 
especially those involving relaxation effects. The applicability of direct variational methods for finding 

nonstationary fields of temperature, concentration, pressure and velocities is emphasized. 
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NOMENCLATURE 

surface; 
constant multipliers in equation (41), 
see text; 
heat diffusivity; 
coefficients in equations (6) and (9); 
variational principle of classical 
(stationary action) type; 
specific heat capacity; 
velocities of wave propagation for heat 
transfer, diffusion and momentum 
transfer, respectively; 
mass diffusivity; 
external force per mass unit; 
internal source of heat; 
four-dimensional vector describing 
density of energy flux; 
three-dimensional vector describing 
density of energy flux; 
four-dimensional vector of mass 
velocity; 
reaction rate constant; 
molar mass of component 1; 
unit normal vector (n,, nY, n,); 
n, = (n, nJ in space x, y, z, c,t; 
overall pressure; 
dependent variable in functional (1); 
irreversible heat flux vector, with 
components qhi; 

universal gas constant; 
radius vector with coordinates 
xi tx, Yt z, ; 
action functionals for heat transfer, 
diffusion and momentum transfer, 
respectively; 
general action functional, 
equation (41); 

T, To> local temperature and reference 
temperature, respectively; 

T,, temperature of external medium; 

t, time; 

K volume; 

” (&CT up uz), constant velocity (velocity of medium 
in infinity); Iv1 CC c; 

w (wX, wyr wz), vector describing the fluid velocity 
field; 1 w 1 cc c; 

X, half-thickness of the plate; 

XI (x. Y? 4, cartesian coordinates; 
x (x, y, 2, cht), coordinates of four-dimensional 

time-space; 

F, e mass concentration (weight fraction) 
and solid moisture content, 
respectively; 

.T mass source. 

Greek symbols 

heat exchange coefficient ; 
variational symbol (6T = E$); 
parameter of variation; 6T = E$; 

Lagrangian of functional (1) and its 
autonomous part, respectively; 
heat conductivity; 
heat conductivity tensor; 
chemical potentials of components 1 
and 2, respectively; 
mass density; 
relaxation times for heat transfer, 
diffusion and momentum transfer, 
respectively; 
function investigated in equations (2) 
and (6) ; 
four-dimensional volume; 
vector operator; 
Laplace operator. 
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Subscripts 

11, heat transfer ; 

; 
diffusion; 
final time; 

; 
momentum transfer; 
reference state, e.g. stage at infinity; 

132, components 1 and 2, respectively. 

Remarks concerning index notation 

i, k, indices in three-dimensional space; 

t, time coordinate; 

,& E, indices in four-dimensional space. 

1. 1NTRODUCTION 

THE VARIATIONAL principles that lead to the equations 
of mathematical physics have long been the subject 
of interest for numerous investigators. One of the 
reasons for that is that these principles are of theo- 
retical significance for a systematic and exact derivation 
of the process equations and conservation laws. Their 
usefulness, in providing an alternative method of 
solution of such equations by minimizing the functional 
using any of the direct approaches, has also been re- 
cognised (Elsgolc [l]). Since no variational principles 
of classical type have been hitherto found for macro- 
scopic processes in which dissipative phenomena are 
accompanied by nondissipative ones a consensus 
generally prevails that merely the elementary pheno- 
mena that occur in the microworld can be described 
by the principle of extremizing suitable functionals, and 
that this is due to reversibility of these phenomena 
on account of the changed direction of time in the 
Lagrange equations (see for instance Yourgrau and 
Mandelstam [2]). The “non-classical” variational prin- 
ciples, such as, e.g. the local potential method by 
Glansdorff and Prigogine [3] and a number of related 
methods based on limited variations, c.f. [4] are not 
contradictory to the above statement, as they in fact 
do not involve the minimizing of the classical 
functional. This has been clearly pointed out by 
Finlayson and Striven [4] in their valuable critical 
review of the available variational principles, to which 
the reader is referred. 

Our present goal is to construct the classical vari- 
ational principle (C.V.P.) that will join both non- 
dissipative and dissipative effects and result under 
definite assumptions* in basic equations of chemical 
engineering, i.e. in equations of change? for heat, mass 
and momentum transport in incompressible media. 
Consequently, the fact of existing such C.V.P.‘s that 
describe either nondissipative or purely dissipative 
phenomena exclusively is not enough for us. These 
C.V.P. include among others variational principles of 

* See Section 3 for detailed specification of assumptions 
used. 

t The terminology used by Bird et al. [5], for partial 
differential equations resulting from balance of heat, mass 
and momentum. 

elementary particle dynamics [2] together with the ones 
of ideal fluid mechanics [6] as well as with many 
principles of elasticity theory [7, S] where dissipation 
effects are neglected. On the other hand these C.V.P.‘s 
comprise also of well-known principle of minimum 
entropy production [9] which deals with purely dissi- 
pative processes, cf. [3]. 

All such principles are not, however, relevant to the 
matter at hand as they do not describe interdepen- 
dences between dissipative and nondissipative effects 
occurring in our real macroscopic world. 

Therefore, the new variational principle of the 
classical type will be reported in this paper. This 
principle will lead to the time-unsymmetrical and 
position-unsymmetrical Lagrange equations, and for 
that reason it will be extremely useful for the de- 
scription of many processes in which the dissipative 
effects are accompanied by nondissipative ones. Sub- 
sequently, examples of application of the principle will 
be discussed in the variational derivation of linear 
equations of change for non-coupled processes of heat 
mass and momentum transfer, characterized physically 
in Section 3. 

It will be shown that the resulting linear equations 
of change (obtained as Euler equations of pertinent 
functionals) are of hyperbolic type, i.e. that they take 
into account the finite speed of disturbances (cf. 
Appendix) due to the presence of relaxation terms. 
Although some of hyperbolic equations of change (for 
heat, mass and momentum) were derived in recent 
years, either by macroscopic balance method (using 
more exact nonlinear laws between dissipative fluxes 
and forces) [lo-141, or by statistical method [15,13] 
(c.f. Appendix for a brief review and also the illustration 
of the former method) it is always, however, important 
to verify that the hyperbolic terms rather than para- 
bolic ones appear when using a unified variational 
approach. This approach will confirm the Morse and 
Fehsbach statement [14] that the d’alembert’s oper- 
ators (V2 - 8/c2&) rather than the standard Laplace 
operators should appear in equations of change, to 
resolve physical paradox of infinite speed of dis- 
turbances, this paradox resulting from standard (para- 
bolic) equations. Furthermore, this approach will 
provide natural variational formulation for well-known 
standard form of equations of change when relaxation 
terms (which are most often very small) will be finally 
taken equal to zero in all resulting Euler equations. 

The project of our analysis is as follows. After 
describing the general structure of functionals used 
(Section 2), the detailed characterization of assump- 
tions for physical problems investigated is given 
(Section 3). Then, the action functionals and resulting 
Euler equations are found for the problem of pure 
heat transfer in solid (Section 4) 

Afterwards, following the unified variational pro- 
cedure, the diffusion equation is obtained for isothermal 
binary fluid (Section 5) and linearized equation for 
momentum transfer in isothermal one-component fluid 
are found (Section 6). Furthermore (Section 7) the 
results obtained in previous sections are simply ex- 
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tended to find a general functional with several un- 
knowns (T, P, jj, wi) that leads to the complete system 
of linear equations of change (for energy, mass and 
momentum) in non-reacting binary mixtures. Finally, 
the transition to parabolic description is discussed and 
exemplified (Section 8) and the importance of the 
results obtained in this paper is discussed (Section 9). 

In Appendix some basic information concerning 
relaxation effects is quoted and appearance of hyper- 
bolic terms in equations of change is reminded (see 
[lo-131) by macroscopic balance method. 

2. GENERAL STRUCTURE OF THE ACTION 
FUNCCIONALS 

Our fundamental assumption in finding suitable 
functionals will be, that if the equations of physical 
processes are autonomous by themselves (i.e. in- 
dependent variables do not appear there explicity), an 
integrand of the action functional (Lagrangian) can 
exist which is non-autonomous. This fact has not so 
far been discussed in more detail in the classical 
variational calculus and in the optimization theories. 

Let us consider a non-autonomous functional 

a4 34 a4 a4 
q,-,-,--,--,x,y,z,t 

ax ay aZ at 
(1) 

and examine which sufficient conditions must be met 
so that the Euler equations (resulting from the vanish- 
ing of variation 5) should explicitly contain no in- 
dependent variables x, y, z, t. We assume the following 
form of Lagrangian ii 

&=A 4’Y&‘ay’~‘~ .ddx,y,z,t) e$#O). (2) 
( 

a4 aq a4 a4 

> 

Using formula (2) in the Euler equation of the 
functional (1) and assuming that x = x1, y = y2, z = xj, 
we obtain 

+; $ =c (3) 
3 ( ) x3 a4 

where 

a4 4 qki=-(i=1,2,3) and q;=-. 
axi at 

Substitution of (2) into (3) leads to relation 

or, after dividing both members by ,$ : 

3 ah4 ah aA 
+izlFaq’=g, @) * XI 

Equation (5) will not have explicity independent 
variables Xi, t if function In [4(Xi, 01 that appears there- 

in will be linear, that is, 

4 = exp mt+ i biXi+e 
> 

. (6) 
i= 1 

Euler equation (5) will then assume the autonomus 
form of a general structure 

i.e. upon substituting (6) into (5) 

+ibi 2 =a;. (8) 
i=l ( > XL 

Thus functional (1) is 

,=SSSSA(q,~,~)exp(m(+~~,,,i+e)d~d,. 

(9) 

Functional (9) is useful in variational descriptions to 
result in equations of change for a variety of problems 
in theory of heat, mass and momentum transfer, es- 
pecially those analysed in Sections 4-7. 

Noteworthy is that the exponential member in 
equation (9) proves to be good in the applications for 
which our autonomicity condition need not be met for 
function A of this equation. (Some examples of that 
type will be treated herein in the discussion of the 
diffusion with chemical reaction in the presents of a 
deactivating catalyst and with the heat processes with 
internal sources.) 

Equation (9) will conveniently be used for appli- 
cations in its alternative form. For transport processes 
with relaxation effects of advantage is the assumption 
e = 0, m = l/z (where T is relaxation time), and 
bi = oJD where u are components of definite velocity 
(constant for motion of the medium), and D is a definite 
diffusivity. Then 

where r(xI,xZ,x3) is the radius vector. In the case 
when v = 0 functional (10) is reduced to the form 
already studied in the literature by Vujanovic and 
Djukic [ 17,181. 

3. PHYSICAL CHARACTERIZATION OF ASSUMPTIONS 

In this paper we investigate exclusively the un- 
coupled transport processes in incompressible media 
for which approximation p = const is allowed (solids, 
liquids and subsonic gases). As in [16] it is assumed 
that these media move with the known constant 
velocity at infinity v and 1 v ) << c. The velocity v should 
be distinguished, in fluid case, from unknown velocity 
w(x, y, z, Q-a variable characterizing local momentum 
changes-which is sought within the volume investi- 
gated. For solids only pure heat transfer is analyzed. 

It is generally assumed that 

w(x, y, z, t) = v + A+, Y, z, t) 
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where Aw is a small quantity and, consequently, that 
velocity w (but not its derivatives) can be replaced by v 
in every expression for substantial derivative (i.e. that 
operator d/at + w grad can be approximated by oper- 
ator ii/& + v grad). This isclassicul Oseen’s upprouch [ 161 
to obtain linearized equations of fluid mechanics, see 
e.g. equation (40) in this paper. It may be observed that 
such approach is more exact in the case of solid where 
w practically equals to v. 

It is always possible to operate with specific heat 
under constant pressure, C,, in all energy equations, 
c.f. [5]. This quantity is used particularly in description 
of heat transfer in solid, where C, 2 C,, replacing more 
proper quantity C, in internal energy term, see [5]. 
The constancy of transport properties (thermal and 
mass diffusivities, fluid viscosity as relaxation times) is 
assumed. 

It should be pointed out that the absence of coupling 
effects is assumed, in cases with several transfer 
potentials* (Section 7), and that this uncoupling 
assumption concerns both kinetic laws between fluxes 
and forces (e.g. vanishing of reciprocity Onsager’s 
coefficients) and the internal and transport properties 
of equations of change as well. Our approximation 
w 2 v in substantial derivatives results in relationship 
between temperature (or concentration) and velocity v 
rather than w. Negligence of viscous dissipation term 
in energy equation is assumed (necessary for un- 
coupling of Tand w). 

A direct consequence of uncoupling is that the 
solution of conservation equation for any internal 
transfer potential (e.g. temperature) is independent of 
changes in solutions of remaining potentials (e.g. con- 
centration). Therefore for our most general problem of 
non-isothermal incompressible non-reacting fluid 
(Section 7) the action functional with several unknown 
transfer potentials can be constructed as a linear com- 
bination of partial fimctionals, all describing separately 
heat transfer, diffusion and momentum transfer (addi- 
tivity property). This is a consequence of uncoupling 
assumptions due to which either prescribing or varying 
of definite transfer potential field does not effect the 
changes in fields of other potentials (see especially 
Section 7). 

4. HEAT PROCESSES IN MOVING SOLIDS 

In order to bring out the efficiency of the variational 
formulations using functionals (9) and (lo), suitable 
integrals will be provided for which condition: 8s = 0 
leads to hyperbolic equations of time-dependent heat 
conduction in the solid that mo<e with a constant 
velocity w = v. The classical functionals describing the 
time-dependent heat processes which occur in the pre- 
sence of a macroscopic motion have hitherto been 
unsuccessfully sought in the variational calculus, c.f. [4]. 
The local potential approach by Glansdorff and 

.___- ~~-~~~~~~_.____ 
*We mean here temperature T, concentration 4;. and 

velocity w as transfer potentials of uncoupled processes. 
Additionally, variables T and j; are calfed internal transfer 
potentials. 

Prigogine [3] applied for such processes does not in- 
troduce the functional in the classical meaning. Hence 
comes the shortcoming of this approach, as the error 
cannot be easily determined when any direct method 
is taken (see Schechter [ 191). 

In setting up the functional that describes time- 
dependent heat conduction a mathematical analogy 
with the mechanics of elastic bodies can be advan- 
tageously employed, for which Hamilton’s principle of 
stationary action holds. Then the Lagrangian contains 
the difference of the kinetic and potential energies. The 
analogue of kinetic energy in the heat-transfer theory 
may be the following expression &at incorporates 
thermal relaxation time 

whereas that of the potential energy under a constant 
strain is the expression 

-t 
SJ 

I(grad 79’ dx dy dz 
V 

(12) 

If 1,(x, y, z, t) denotes the amount of energy released 
from a unit volume of the body in which an internal 
source of heat is present, the product 7’l,(x, y, z, t) con- 
stitutes a contribution to the Lagrange function which 
is due to the action of the sources.* As an action 
functional for the process of the heat conduction in a 
moving solid body of a given temperature of the surface 
and of constant parametres (p,C,, zh and a) it was 
assumed 

The use of known physical relations between the 
coeffi,cients 

in the Euler equation (8) applied for functional (13) 
gives 

The result obtained is the time-dependent heat- 
conduction equation in its more exact (hyperbolic) 
form, c.f. [lo-133, with an account of the velocity of 
heat wave propagation C,, = (a/rh)“‘. It simplifies to 
classical energy equation if c, -+ co. 

It should be observed that equations (13) and (16) 
can be used not only for solids but aiso (approximately 
with assumption v z w) for incompressibIe fluids, even 

_.______-._.--___ -” 
*The above analogies have no physical meaning but are 

of purely mnemonic character. 
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in the case of solutions, when Dufour’s effect is 
neglected and Cpl z CpZ, cf. Bird et al. [S] for classical 
version of equation (16). 

This fact should be remembered since it will be 
exploited in Section 7 where a general functional is 
found that leads to the complete set of linearized fluid 
mechanics equations, including equation (16). 

If the heat sources are absent and the body is at rest, 
equation (16) resolves itself to a simpler form 

(17) 

The functional leading to equation (17) is a particular 
case of functional (13) in which v = 0 and 1, = 0 have 
been substituted. The latter particular case is described 
in the literature [S]. The well-known derivation of 
hyperbolic equation (17), c.f. [lo-131, based on con- 
servation law and constitutive heat equation (involving 
relaxation effects) is given in Appendix. 

Physical interpretation of the difference (t/7,,-vr/a) 
which appears in the exponential term of equation (13) 
is of interest. The use of equation (15) then yields 

obtained for variation S$,: 

-‘+ $dA,dt. 
) 

Evaluation of derivatives of the products in the first 
integral, application ofthe Green theorem in the second 
integral of the above formula, with the condition 
T = const on surface AZ, lead to the relation: 

4(r,t) = exp(i-:) = exp[i(t-:)]. (18) a$,= e~~~~~“{l~+~(divgradT-~~) 

Quantity (t-w/c;) has the dimension of time and 
will be referred to as the proper time of heat pro- 
pagation. Thus the exponential term of functional (13) 
contains a dimensionless quotient of the proper time 
and relaxation time r,,. 

It appears attractive to consider generalization of the 
problem over a case of more complex boundary con- 
ditions. Let us take a moving solid body that passes 
through a given fixed balance shield confined by surface 
A. It is further assumed that over a part of surface A, 

say, Al, heat exchange takes place between the body 
and the medium of a temperature T,, whereas part AZ 

of the surface is kept at a constant temperature T2. 
Similar problems are involved during the cooling or 
heating of moving solid blocks of material. 

On account of the heat exchange between the body 
and the medium the Lagrangian should contain an 
additional term in the form of a suitable surface 
integral which describes the phenomena occurring on 
surface Al. Accordingly, the following action functional 
has been taken 

dA,dt. (19) 

By substituting into the above formula the variation 
of temperature as ST = &t,b the following formula is 

+E n WA,,tl f 
c,at 

exp(k--‘F)$dA,dt (21) 

from which it results for S$, = 0 the heat-conduction 
equation of a moving solid body 

yC,rs+vgradT) = I(V’T- i$) 

+ L(& Y, z,d (22) 

and the boundary condition that describes the heat 
exchange on surfaceA, : 

Iz 
l 

n, 2 - ngrad T(A1, t) = a(T,-- TIAI, t]). (23) 
h 1 

Note that n, = 0 if v = 0; the classical boundary con- 
dition is thus recovered for solid at rest. 

The reader may additionally visualise that for the 
case of a contact of two surfaces, action & represents 
the sum of two integrals which constitute the first 
member of equation (19), and that then the boundary 
condition on the surface of contact has the form: 

$ Aj(n,jas- njgrad q) = 0 0’ = 1,2). (24) 
j=l 

We can see that the boundary conditions for the 
hyperbolic equation may not be simply related to the 
constitutive equation of heat conduction involving re- 
laxation. The dissimilarity of boundary conditions has 

HMT Vol. 20, No. 11-I 
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been pointed out by, among others, Luikov [13] and 
Chernyshov [20]. 

Noteworthy is also the following simple manner of 
interpretation of hyperbolic equation (22). Much like 
as Feynman did [21] in his interpretation of relativistic 
effects, but with ck understood here as the velocity of 
propagation of thermal wave, the time-space with co- 
ordinates (x, y, z, c,,t) can be considered.* In this time- 
space a four-dimensional mass flux density j,,(pui,pu,, 
pu3, pcI) and a four-dimensional vector operator 

VP a,-a,-a,5 
( ac,t ax ay az ) 

are defined. The following expression is attained which 
describes the four-dimensional vector of the overall 
energy density J, (J,, J,, J,, J,) 

J, = IV,T+pv,C,T (v, = v,c,,). (25) 

In the space under consideration the scalar product 
of vectors a,, . b,, equals a, b, -a, b, - ay b, - a, b,. Hence 
it follows that the four-dimensional divergence as the 
scalar product V,, J,, is 

aJ* V,, J, d!?+%+>+_ 

ay z a(+) 
Calculating this divergence using formula (25) and 

comparing the result with the hyperbolic equation (22) 
it may be inferred that this equation can be written 
in the form 

V, J, = Is@, Y, Z, c,, t). (26) 

This is equivalent to the corollary that the four- 
dimensional vector of the energy flux density equals 
the density of the sources of heat I,. For that reason 
the presence of hyperbolic members in the heat- 
conduction equation may be looked upon as a con- 
sequence of the appearance of the time component of 
the four-dimensional vector of heat flux which contains 
the irreversible relaxation term l(dT/i?(c,,t)), in 
addition to the reversible term which is the product of 
the propagation velocity of the heat wave, c,,, and the 
energy flux density, pC,T. Equation (26) may be de- 
rived from the variational principle SS = 0, where 

s’=+ 
ssss R 

{W, T)‘+ 2TI,(x,)} exp x+ dQh (27) 
( ) 

in the case of constant temperatures at the boundary 
of the system and for given initial and final times. 
Equation (27) actually represents the four-dimensional 
notation of equation (13). 

The results obtained till now can be easily generalized 
over the case of a moving anisotropic body with un- 
steady temperature for which the classical variational 
formulation leading to a differential equation describ- 
ing energy conservation is not known, either.? 

* Several remarks on four-dimensional interpretation of 
heat conduction can be found in [22] without, however, any 
reference to variational principles. 

t A related problem of variational fo%ulation for con- 
stitutive Fourier equation describing flux-force relationship 
in anisotropic case is critically reviewed by Finlayson and 
Striven [4]. 

For the anisotropic case merely the scalar 1 should 
be changed into the three-dimensional heat conduction 
tensor ,4ik in the action integral. On the other hand the 
exponential member of the action should contain in 
place of thermal ditisivity a matrix u,i’ = pC,l,~’ 
whose elements are the components of the heat re- 
sistance tensor J,i ’ * multiplied by the scalar factor 
PC, The action integral in the case of a constant tem- 
perature of the boundaries has the following form: 

+2TIs(Xi, t) 

whereas the Euler equation for &, = 0 is 

(29) 
as &ail, ’ = pc,&, where &k is unit tensor. The above 
equation can formally be derived from the requirement 
that source I, should be equal to the four-dimensional 
divergence of the following vector of the overall energy 
flux density 

5. TWO-COMPONENT DIFFUSION WITH A 
CHEMICAL REACTION 

As a matter of course, the analogous approach can 
be used in the description of the diffusion in solids and 
fluids without crossing effects in view of a close re- 
semblance between the heat transfer and the mass- 
transfer equations. The subsequent discussion is merely 
restricted to the formulation of the variational principle 
for isobaric and isothermal diffusion in a two- 
component isotropic fluid with a single chemical re- 
action on the assumptions of a constant concentration 
at the boundaries of the system and small Aw (w 2 v). 
For non-isobaric and non-isothermal diffusion the re- 
sults in this section can be simply exploited (under 
uncoupling assumption) as shown in Section 7. If the 
reaction rate is defined by equation 

i=kj” (k = const(j)) 

the relevant action integral has the form 

(31) 

Condition 6s = 0 and relation T* = D/c: result in 
diffusion equation 

p($+vgradp) = pD(V'B-$$)+kli' (33) 

*Tensor & obeys the Onsager symmetry relation &. = &. 
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that simplifies to its classical counterpart for cd + co. 
The hyperbolic diffusion equation with sources was 
obtained in case v = 0 by Goldstein [15] who used 
statistical method. Phenomenological method using 
macroscopic balance was also applied by Luikov [13], 
following analogous technique for heat equation, cf. 
Appendix. 

Formula (32) can be easily generalized over the case 
when the reaction rate is described by a function of the 
form 

r’ = VW k = const (j$ (34) 

Here the source member that appears in the action 
integral (32) has the form 

I’ 
28 = k 

s 
f(5)dC (35) 

0 

The most general form of the source member, for which 
still holds action integral of type (32), is 

z(j, xi, t) = k(xi, t) 
s 

oy f(<Txi, t) dr. (36) 

Replacement of member ky+ l/n+ 1 in integral (32) by 
the RHS term of formula (36) leads, with the condition 
S$ = 0, to equation 

P~=~~~“y-~~~+k(xi,t)~iv,xi,t). (37) 

The latter result indicates that a variational formula- 
tion can be found which leads to the diffusion equation 
in which the source terms may be entered as an ex- 
plicit function of concentration, time, and space co- 
ordinates. This is of significance for the description of 
the processes with a chemical reaction, in which the 
kinetic equation coefficient vary with space and time 
because of deactivation of the catalyst. 

6. THE MOMENTUM TRANSPORT PROCESSES 
IN ISOTHERMAL FLUID 

The experience gained in the investigation of the 
previous problems is useful in an easy finding of a 
functional that leads to a linearized equation of motion 
of an incompressible isothermal viscous fluid. As 
pointed in Section 3 it is assumed that vector v = const 
in equation (10) describes the constant velocity of the 
fluid in infinity, whereas within the volume investigated 
(at the boundaries of which the pressure P and the 
velocity are established) the velocity is described by the 
vector field w(x, y, z, t), and w = v+ Aw where Aw is a 
small quantity. Action functional has the form (v is a 
constant kinematic viscosity) 

3, = 

a(q) a&t) ax, ax, 

-wi(g-pF,))exp(t-y)dVdt (38) 

and the necessary condition of stationarity of 3, with 
respect to the pressure P (the Euler equation) is 

approximately* for small Aw 

3!LO 
axj 

i.e. is the continuity equation for an incompressible 
fluid. The 3, stationary conditions, with respect to 
the velocity components w, have the form of: 

i.e. these have Oseen’s linearized form, cf. [16], of 
hyperbolic Navier-Stokes equations. The presence of 
second time derivative in equation (40) provides the 
finite speed of shear strain, c.f. [23], [13]. 

Note that due to the uncoupling assumption, 
functional (38) still can, be exploited to derive equations 
(39) and (40) in the case of non-isothermal two- 
component fluid. This notion is exploited with more 
details in the forthcoming section. 

7. AN APPROACH FOR UNCOUPLED HEAT MASS AND 
MOMENTUM TRANSFER IN NON-ISOTHERMAL 

NON-REACHNG BINARY FLUID 

The previous section has shown that for the fluid 
flow problem, the functional just considered, with 
several unknown functions [w,(r, t) and P(r, t)] had to 
be sought. Now, one can generalize that problem 
considering non-isothermal binary fluid in the absence 
of chemical reaction? (k = I, = 0) to obtain suitable 
functional [with the unknowns T(r, t), jj(r, t), P(r, t) 
and wi(r, t)] giving rise to complete system of equa- 
tions of change, i.e. equations (16), (33), (39) and (40) 
with k = I, = 0. In order to accomplish such a vari- 
ational formulation it is useful to note that under 
uncoupling assumptions (c.f. Section 3) the form and 
solution of momentum equation (40) and continuity 
equation (39) do not change whether or not tempera- 
ture and concentration fields vary. Therefore, in the 
present case, the complete set of differential re- 
lationships [equations (16), (33), (39) and (40) with k 
= I, = 0] can be obtained from a functional (41), the 
additive parts of which are-with accuracy to the 
constant multipliers-functionals 3,,, 3,, and f,,, [equa- 
tions (13), (32) and (38)] taken with k = I, = 0. It 
means that our general action functional has the 
following additive form 

s’= A&+B&C& (k = Z, = 0) (41) 

where all multipliers 2, fi, and c can be arbitrary but 
non-zero constants. 

The stationarity conditions for 3, equation (41), with 
respect to variables ‘P, J, P and Wi are equations (16), 
(33), (39) and (40) with k = I, = 0. They are all linear 
because of the presence of velocity v instead of w in 

*The term (uiAwi)/v was neglected since it approaches 
zero when Awi --t 0. 
t In the case of non-isothermal reacting mixture, heat and 

diffusion equations are necessarily coupled and their con- 
sideration is beyond the scope of this paper. 
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substantial derivative operators. Due to this approxi- 
mation the range of the present theory, in its application 
to the non-reacting fluid mechanics problems is re- 
stricted to the case of small changes of fluid velocity w. 

Some additional remarks can be made concerning 
multipliers (or weights) in equation (41). Although they 
can be arbitrary it seems to be reasonable to choose 
them in a definite manner allowing some physical in- 
terpretation. It may be verified that if one defines these 
multipliers as 

A = -A, 

MIR = -. 
PO0 -~o)(~ooM2/Ml+ 1 -jo)’ 

where subscript zero pertains to some reference state, 
e.g. state at infinity, then all components of Lagrangian 
of functional (41) will provide entropy source 
dimension. Furthermore, in the case of quiescent fluid 
(w = v = 0) and the absence of nonstationarities (e.g. 
relaxation effects) the exponential terms equal to unity 
and the total Lagrangian also approximates* (under 
uncoupling assumptions) this entropy source itself. This 
is of course not surprise, since, as is widely known [9], 
the minimum entropy production principle holds for 
stationary dissipative systems, this principle leading 
to the simpered ~~u~jonffry form of equations of change 
without convective terms, c.f. [9]. Thus our principle 
replaces the principle of minimum entropy production 
for non-stationary cases with convection which were 
just considered. For this reason equation (42) is recom- 
mended to define 2, s and e in equation (41). 

8. LIMITING PROCEDURE LEADING TO 
STANDARD DESCRIPTION 

The compatibility of the hyperbolic differential 
equations and a well-known standard parabolic form 
of conservation equations is obvious as long as all 
relaxation times are finally taken equal to zero in all 
the Euler equations obtained here. Such limiting pro- 
cedure can also be accomplished when any direct 
method, as e.g. Rayleigh-Ritz method or Kantorovich 
method, c.f. [l] is completed for extremizing the action 
functionals. 

To illustrate briefly the latter method, where the 
coefficients of approximate solution are unknown 
functions of definite independent variable (e.g. time), 
consider simple example, the exact standard solution 
of which is known in series form in [24]. 

Assume that our task is to determine moisture con- 
tent P(x, r) in a resting infinite plate the sides of which 
are maintained at a constant concentration, i.e. a = pe 

*An approximation T 2 TO, j 2 j, should be made in 
coefficier~ts of expression for entropy source. The Gibbs- 
Duhem relation has been used in equation (42b) as well as 
formula 

PIT = Mt RTln 
i- 

?/MI 

Y/M, +(I--y7/~z 
+ const (F, T). 

and the initial moisture content field P(x,O) is para- 
bolic. Thus, the initial and boundary conditions pertain 
to onset of so called second drying period, i.e. 

P = E + B(O,O)[l - (.x/X)*] at t = 0 

for -X<X&X (43) 

P=E at x=*X for t>O 

if B&co. (44) 

For these conditions we want to determine an approxi- 
mated solution ofequation (33) in one-dimensional case 
and when v = k = c; ’ = 0 with the help of direct 
variational method. Applying Kantorovich method to 
extremize the integral 

which is a truncated form of the action functional (32) 
in case considered, one may assume the following form 
of moisture content field 

B&t) = z+ ~(O,O)~i-(X/X)~]~(~~ (46) 

where h(r) is an unknown function of time such that 
h(0) = 1. Applying equation (46) into equation (45) and 
integrating the result obtained with respect to x one 
finds : 

I$” * P(t) - 2.5 

x X-2bz(t) 

The unknown function h(t) must be chosen so that 
integral (47) becomes stationary. It means that one- 
dimensional Euler equation, describing h(r), must be 
met for integrand of equation (47). Thus, one has 

r,h’+h = 2.5hDX-*. (48) 

Realizing limiting procedure, rd = 0 must be taken in 
equation (48) and the resulting equation, under con- 
dition h(0) = 1, must be integrated. Hence 

and after substituting equation (49) into equation (46): 

F = E+ y(O,O)[l- (x/X)‘] expf- 2.5DtX-‘). (SO) 

This approximation agrees with accuracy of 4% with 
exact analytical solution of parabolic equation pre- 
sented graphically by Carslaw and Jaeger in Fig. 10(d) 
in [24]. 

The physical justification for the procedure just 
described lies in the fact that relaxation times are 
usually very small, e.g. for solids they are of order 
lo- l2 s (it was a reason for neglecting the relaxation 
effects at all in the past, c.f. Appendix). 

It should be, however, pointed out that the limiting 
procedure is not necessary, since in the light of many 
more recent investigations, e.g. [lo-141 (see also 
Appendix) the hyperbolic equations represent more 
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correct form of conservation laws than parabolic ones 4. B. A. Finlayson and L. E. Striven, On the search for 
as they are based on more exact constitutive relation- variational principles, Inc. J. Heat Mass Transfer 10, 

ships resolving paradox of infinite speeds of dis- 799-821 (1967). 

turbances. Thus, one may omit the limiting procedure 
5. R. B. Bird, W. E. Steward and E. N. Lightfoot, Trans- 

especially in cases where the significance of relaxation 
port Phenomena, p. 316. John Wiley, New York (1960). 

6. R. L. Seliger and F. R. S. Whitham, Variational prin- 
effects is to be expected, e.g. in viscoelastic fluids, rare- ciples in continuum mechanics, Proc. R. Sot. %A, 

fied gases, dispersed systems, in Helium II, etc. (see l-25 (1968). 

Appendix for information concerning computation of 
7. M. E. Gurtin, Variational principles for linear elasto- 

dvnamics, Archs. Ration. Mech. Analvsis 16. 34-50 
relaxation times. (i964). 

8. Cz. Wozniak, Fundamentals of Dynamics of Deformable 
9. FINAL REMARKS AND IMPORTANCE Bodies. PWN, Warsaw (1969). 

It is a not rare opinion, see [4, 19, 23, that the 9. S. R. Groot and P. Mazur, Non-equilibrium Thermo- 

irreversible processes can not be generally character- 
dynamics. North-Holland, Amsterdam (1962). 

ized by extremum principles such as classical vari- 
10. C. Cattaneo, Sur une forme de l’equation de la chaleur 

eliminant le paradoxe d’une propagation instantanke, 
ational principles (of stationary action type). The failure C. R. Hebd. Seanc. Acad. Sci., Paris 241,431-433 (1958). 

to construct such principles for standard (parabolic) 11. P. Vernotte, Les paradoxes de la theorie continue de 

form of well-known equations of change, is as a rule I’equation de la chaleur, C. R. Hebd. Seanc. Acad. Sci., 

the principal criterion in testing the validity of the 
Paris 246,3154-3155 (1958). 

12. A. V. Luikov. Analvtical Heat Diffusion Theorv. Aca- 
above opinion. demic Press, New Ybrk (1969). dd 

i 

In this work it was, however, shown that the 13. A. V. Luikov, Methods of irreversible thermodynamics 
principles of the kind considered can be constructed as applied to heat and mass transfer investigation, 

for linear hyperbolic conservation equations which take 
Inzh. Fiz. Zh. 9,287-304 (1965). 

into account relaxation effects in transport processes 
14. P. M. Morse and H. Feshbach, Methods of Theoretical 

Physics. McGraw-Hill, New York (1953). 
investigated. The principles obtained are the first in 15. S. Goldstein, On diffusion by discontinuous movements 

literature which can account for. with considerable and on the telegraph equation, Q. J1 Mech. Appt. Math. 

generality, both dissipative and non-dissipative effects 4, 129-156 (1951). 

in heat, mass and momentum transfer processes. Their 
16. S. Tomotika and T. Aoi, The steady flow of a viscous 

practical value consist in that that action functionals 
fluid past an eliptic cylinder and a flat plate at small 
Reynolds numbers. 0. JI Mech. Anot. Math. 6. 290-312 

can be minimized bv means of direct methods to find (1553). 
_I s & 

the time-dependent fields of transfer potentials, even 
for very involved boundary conditions, when the ana- 
lytical solution of transport equations is unfeasible. 

Effectiveness and novelty of the mathematical 
method, that was applied for construction of action 
functionals, is an additional important point of this 
work. It is seen that due to the presence of non- 
autonomous exponential terms of our Lagrangians, the 
resulting Euler equations contain both odd and even 
partial derivatives and as such, these equations have 
the following significant property: the change of time 
sign (t -+ -t) or spatial coordinate sign (xj+ --x3 
changes the resulting solution. This is clearly just an 
irreversibility property of our real macroscopic world- 
a property that was fit into our variational scheme. 
Possible adaptation of this scheme for finding the 
variational principles that lead to coupled transport 
equations involving Onsager’s relations will be a sub- 
ject of further effort along this line. 

AcknowledgementsHelpful discussion with Drs. W. Gogol, 
L. Laskowski, S. Wronski and M. Maczynski (Warsaw) is 
gratefully acknowledged. The reviewer’s comments have 
resulted in an improvement of the manuscript. 

REFERENCES 
1. 1. L. E. Elsgolc, Calculus of Variations. PWN, Warsaw 

(1960). 
2. W. Yourgrau and S. Mandelstam, Variational’Principles 

in Dynamics and Quantum Mechanics, 2nd edn. Pitman, 
London (1960). 

3. P. Glansdorff and I. Prigogine, Thermodynamic Theory 
of Structure, Stability and Fluctuations. John Wiley, New 
York (1971). 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

9. Vujanovic, An approach to linear and nonlinear 
heat transfer problem, AIAA Jl9, 131-134 (1971). 
B. Vujanovic and D. J. Djukic, On one variational 
principle of Hamiltons-type for nonlinear heat transfer 
problem, Int. J. Heat Mass Transfer 15, 1111 (1972). 
R. Schechter, The Variational Method in Engineering: 
McGraw-Hill, New York (1967). 
A. D. Chernyshov, On the heat conduction theory for a 
finite velocity of heat propagation, Inzh. Fiz. Zh..28 (3), 
523-527 (1975). 
R. P. Fe&ham, R. B. Leighton and M. Sands, The 
Feynham- Lectures on Physics,. Vol. 2, Chapter 25. 
Adison-Weslev. Readine. MA (1963). 
V. L. Kolpashnikov and A. A. Baranov, Geometrized 
theory of hyperbolic heat conduction equation, Int. J. 
Heat Mass Transfer 15, 1283 (1972). 
H. D. Weymann, Finite speed of propagation in heat 
conduction, diffusion and viscous shear motion, Am. J. 
Phys. 35,488-496 (1967). 
J. H. S. Carslaw and J. C. Jaeger, Conduction of Heat 
in Solid, 2nd edn. Clarendon Press, Oxford (1959). 
L. Landau and E. Lifszic, Mechanics of Continua, p. 808. 
PWN, Warsaw (1958). 
J. C. Maxwell, On the dynamical theory of gases, Phil 
Trans. R. Sot. 157,49-88 (1867). 
S. Kaliski, Wave equations of thermo-electro-magneto- 
elasticitv. Biul. WAT No. 3. 3-40 (1965): (in Polish). 
M. Chester, Second sound in solids, ‘ihys. Rev. ‘131, 
2013-2015 (1963). 
L. Natanson, Faber die Gesetze nicht umkehrbarer 
Vorglnge, Z. Phys. Chem. 21, 193 (1896). 
J. D. Ferry, Viscoelastic Properties of Polymers, John 
Wiley, New York (197 1). 
R. E. Nettelton, Relaxation theory ofthermal conduction 
in liquids, Physics Fluids 3,216-226 (1960). 
S. Bretsznaider, Properties of Gases and Liquids, p. 
630. WNT, Warsaw (1962). 
D. 9. Spalding, Convective Mass Transfer, p. 142. 
McGraw-Hill, New York (1963). 



1230 STAN~SLAW SIENIUTYCZ 

34. B. Bertman and D. J. Sandiford, Second sound in solid 
helium, Scient. Am. 222, 92 (1970). 

35. N. W. Antonishin, M. A. Geller and A. L. Parnas, 
Hyperbolic heat conduction equation for disperse 
systems, In&. Fiz. Zh. 26 (3), 503-508 (1974). 

APPENDIX 
Some Basic Injormation Concerning Relaxation Eficts 

When describing heat, mass and momentum transfer it is 
customary to use Fourier’s, Fick and Newton constitutive 
equations, respectively. If, e.g. heat conduction in solid is 
considered and Fourier’s equation is applied into energy 
conservation formula, the well-known parabolic equation of 
chage is obtained with the Laplacian operator. This operator 
appears also in equations of change describing diffusion 
and momentum transfer. Consequently, all standard equa- 
tions of change with parabolic terms) have an absurd 
property, [lo-141; a disturbance (thermal, concentrational 
etc.) at any point in the medium is felt instantly at every 
other point or, the velocity of propagation of disturbances 
is infinite. 

This absurd has been pointed otit by many people, and 
the dilemma was resolved, see e.g. [IO-131 by noting that, 
e.g. Fourier’s equation is an approximation to a more exact 
equation called Maxwell-Cattaneo equation : 

q,, = -irgrad T-ThT (u = 0) (A.1) 

which takes into account a relaxation of thermal flux. 
Neglecting Onsager’s coupling the analogous equations 

for irreversible fluxes of mass qd and momentum gik and 
have also been found with additional terms -Td(aqd)/(&) and 
- r,(&,)/(&) appearing in Fick laws and Newton laws, see 
e.g. [13] as well as [25]. These terms were known already 
by Maxwell [26] who first introduced a relaxation time 
concept, rejecting, relaxation terms, however, in most cases 
as small. (He conserved these terms, e.g. for viscoelastic 
fluids.) The presence of relaxation terms in constitutive 
equations proves that flows do not start instantaneously 
but rather grow gradually with relaxation times T,,, z,,, and t,. 
With the help of macroscopic balance method and corrected 
constitutive equations the hyperbolic equations of change 
are found. For instance, [lo-133, substituting RHS of (A.l) 
into conservation formula for resting solid 

pc,+ -$Z L4.2) 

gives (for constant thermal conductivity) the expression 

pC c = IVZT+r iBlq,i. 
p at h 1 atax, (A.3) 

Differentiating (A.2) by sides with respect to time leads to 

,,dzT__f:~ 
p at2 i=, atax, 

Hence, after eliminating the mixed derivative term from (A.3) 
and (A.4) the hyperbolic “telegraph” equation is obtained, 
i.e. : 

1_ 32v 
pC 01 E~V~T-~ pc ” 

p at h 
p at2 

which is equation (17) in the text since ch = (a/~# and 
a = I/PC,. Its generalization for the case of moving solid 
with heat sources is equation (16) in the text. 

Using macroscopic balance method [lo-131 and statis- 

tical method [15] the hyperbolic equations of change have 
been also found in the case of diffusion, see [ 13) and [ 151. 

The role ofmagnetic field effects was also investigated for 
wave equations of solids [27]. 

Hyperbolic equations predict a finite upper velocities for 
the propagation of disturbances [28, 141, called briefly the 
propagation velocities 

c* = (a/ss)f Cd = (o/rd)+ c, = (v/r,)+ (A.61 

due to the presence of d’Alembert’s operators replacing 
standard Laplace operators. 

The important question concerns the values of relaxation 
times 5*, r,,, 5, [or related propagation velocities, equation 
(A.6)]. For ideal gases it is found, c.f. [29,26], that 

T ,pa 
h 

r =!!!? 5 =pv. 
P dP “P 

(A.7) 

Consequently, it results from (A.6) and (A.7) that the pro- 
pagation velocities are equal, i.e. 

Ch = c* = c, = (P/p)% (‘4.8) 

For gases it is roughly r,, 2 T,, E 5, 2 lo-‘- lO-‘O s; and 
c = 3.102m/s close to normal conditions. 

It is seen that, by their order, propagation velocities 
correspond to the velocity of sound under given conditions. 
This notion was extended by Chester [28] for dielectric solid 
where transport of heat occurs via phonon gas. It was found 
[28] that 

c## = s/ J3 (A.9) 

where s is the sound velocity in solid. Equation (A.9) allows 
to evaluate 5,,, too, since rh = a/c?. The results are of order 
ch = 5.103m/s, rL = lo- “-lo- I2 s. 

For liquids, the relaxation time t, can be computed as 

Cl31 
* _!! m- 

G 
(A.lO) 

where G is modulus of shear rigidity that can be found 
experimentally [30] or theoretically [31]. Thus propagation 
velocity for shear strain is 

c, = (G/P)*. (A.1 1) 

Some data of ch for liquids can be found in [31] and c,, 
computed. No information is available concerning values 
cd. Since, however, the propagation velocities are expected 
to be of the same order of magnitude one can assume 
c,, = c, = c,,,. This concept leads us to evaluations: T,, = t,/Pr 
and rd = r JSc, where Pr and SC are Prandtl and Schmidt 
numbers, respectively. For usual liquids where times 5, 
change in the range of 10~‘“-10~‘2s one has the values: 
Pr = l-lo3 [32] and Sh = 102-2 x lo3 [33] with notion that 
times 511 and zd are often much shorter than t,, cf. [31]. 
Some data on efectiue relaxation times t,, were given by 
Luikov [ 131 for colloidal capillary porous bodies, who found 
them to be of order of 10m4s. 

At present no general criterion is available concerning 
necessity of including relaxation terms in equations of 
change. Cases are usually cited [13,23, 28, 341, when these 
terms should be significant: viscoelastic fluids, capillary 
porous bodies, dispersed systems, rarefied gases, helium II; 
especially for high-rate unsteady state processes. Experi- 
ments confirming wave nature of heat, equation (A.5), can 
be found in [34] and [35]. 

PRINCIPES VARIATIONELS DE TYPE CLASSIQUE POUR LES 
MECANISMES DE TRANSPORT IRREVERSIBLE& NON COUPLES ET 

INSTATIONNAIRES, AVEC CONVECTION ET RELAXATION 

R&urn&On prCsente une methode unifiCe qui conduit B de nouvelles fonctionnelles de type classique 
pour lesquelles les conditions ntcessaires de stationnaritt sont des Cquations hyperboliques lin&aires, 
dCcrivant les transferts non couplCs de quantitt de mouvement, de chaleur et de masse dans un milieu 
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incompressible. L’attention est portQ sur la signification des fonctionnelles trouvtes pour une description 
variationnelle des mecanismes de transfert irreversibles, specialement celles qui concernent les effets de 
relaxation. On dtveloppe l’applicabiliti des mtthodes variationnelles directes pour trouver les champs 

instationnaires de temp&ature, de concentration, de mesure et de vitesse. 

DAS VARIATIONSPRINZIP DER KLASSISCHEN FORM FOR NICHT 
GEKOPPELTE INSTATIONARE IRREVERSIBLE TRANSPORTVORGiiNGE 

MIT KONVEKTION UND RELAXATION 

Zusammenfassung-Zur Beschreibung des nicht gekoppelten Wiirme-, Staff- und Impulsaustausches wird 
eine einheitliche Methode vorgestellt, welche zu neuen Funktionen des klassischen Typs Whrt und fur 
welche die notwendigen station&en Bedingungen durch lineare hyperbolische Differentialgleichungen 
gegeben sind. Besondere Beachtung findet die Bedeutung der Funktionen fur eine Variationsbeschreibung 
irreversibler Transportvorgange, insbesondere solche mit Relaxationseffekten. Die Anwendung des 
direkten Variationsprinzips zur Ermittlung instationiirer Temperatur-, Konzentrations-, Druck- und 

Geschwindigkeitsfelder wird hervorgehoben. 

BAPHAHHOHHME I-IPHHIJHIIbl KJIACCMYECKOl-0 TMl-IA B IIPH.IIOIEHMM 
K HEB3AHMOCBJI3AHHbIM HECXAl@IOHAPHbIM HEO6PATHMbIM IIPOHECCAM 

I-IEPEHOCA I-IPM KOHBEKTMBHOM jJBkDKEHMM M PEJIAKCAHHM 

AEU@TWHSl--PaCCMaTpHBaeTCn yHH~HUH~BSLHHb1~ MeTOA, IlO3BOJl5ltollJH8 IlOJIyYHTb HOBble 

&IiKuliOH~bI KJIaCCHYeCKOrO THlla, AJlll KOTOpbIX HeO6XOaHMbwi YCJlOBHRMH CTauHOHapHOCTH 

IIBJIIK)TCII rHnep60JIHYCCKHe AH~~HUHaJlbHble ypaBHeHHU, OnHCblBaKNJlHe HeB3aHMoCBlI3aHHbIe 

npOLWCCb1 nepI?Hoca TellAa, MaCCbl H KOJlHYecTBa ABHmeHHIl B HeGKHMaeMblX CpeAaX. Oco6oe BHH- 

MaHHe o6paqaeTcr Ha 3HaYeHHe nonyrennblx I$~HKUHOH~JIOB AJISI aapmaunouitoro Onncamrn He- 
06paTIiMblX npOueCCOB nepCHOCa, B YaCTHOCTH npoueccoB, BKSItO'iaH)IUHx WKTbI peJIaKCauHH. 

nOAYepKHE%mI Bo3MO;KHOCTb npHMeHeHHK IlpKMblX BapHauHOHHbIX MeTOAOB AJl*nn O~AeJlelillSl 

rrecraunouapubrx nonei retwneparypbr, xouuetirpauuu, naaneunn n ckopocreti. 


